Filomat 29:1 (2015), 1–5 DOI 10.2298/FIL1501001M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Maximal Ideals in Some F-Algebras of Holomorphic Functions

Romeo Meštrović^a

^aMaritime Faculty, University of Montenegro, Dobrota 36, 85330 Kotor, Montenegro

Abstract. For $1 , the Privalov class <math>N^p$ consists of all holomorphic functions f on the open unit disk \mathbb{D} of the complex plane \mathbb{C} such that

$$\sup_{0 \le r < 1} \int_0^{2\pi} (\log^+ |f(re^{i\theta})|)^p \frac{d\theta}{2\pi} < +\infty.$$

M. Stoll [16] showed that the space N^p with the topology given by the metric d_p defined as

$$d_p(f,g) = \Big(\int_0^{2\pi} \Big(\log(1+|f^*(e^{i\theta})-g^*(e^{i\theta})|)\Big)^p \frac{d\theta}{2\pi}\Big)^{1/p}, \quad f,g \in N^p,$$

becomes an *F*-algebra. Since the map $f \mapsto d_p(f, 0)$ ($f \in N^p$) is not a norm, N^p is not a Banach algebra.

Here we investigate the structure of maximal ideals of the algebras N^p (1 < p < ∞). We also give a complete characterization of multiplicative linear functionals on the spaces N^p . As an application, we show that there exists a maximal ideal of N^p which is not the kernel of a multiplicative continuous linear functional on N^p .

1. Introduction and Preliminaries

Let \mathbb{D} denote the open unit disk in the complex plane \mathbb{C} and let \mathbb{T} denote the boundary of \mathbb{D} . Let $L^q(\mathbb{T})$ $(0 < q \le \infty)$ be the familiar *Lebesgue space* on the unit circle \mathbb{T} . For 1 , the*Privalov class* $<math>N^p$ consists of all holomorphic functions f on the disk \mathbb{D} for which

$$\sup_{0 \le r < 1} \int_0^{2\pi} (\log^+ |f(re^{i\theta})|)^p \frac{d\theta}{2\pi} < +\infty, \tag{1}$$

where $\log^+ |a| = \max\{0, \log |a|\}$. These classes were firstly considered in 1941 by I. I. Privalov [15, p. 93] in the first edition of his monograph, where N^p is denoted as A_p .

Notice that the condition (1) with p = 1 defines the *Nevanlinna class* N of holomorphic functions in \mathbb{D} (see, e.g., [1]). Recall that the *Smirnov class* N^+ (see, e.g., [1, p. 26]) consists of those functions $f \in N$ such that

$$\lim_{r \to 1} \int_0^{2\pi} \log^+ |f(re^{i\theta})| \, \frac{d\theta}{2\pi} = \int_0^{2\pi} \log^+ |f^*(e^{i\theta})| \, \frac{d\theta}{2\pi} < +\infty,$$

²⁰¹⁰ Mathematics Subject Classification. Primary 30H50, 46J20; Secondary 30H10, 30H15, 46J15, 46E10.

Keywords. Privalov space N^p ; F-algebra; maximal ideal; multiplicative linear functional.

Received: 1 November 2014; Accepted: 21 November 2014

Communicated by Dragan S. Djordjević

Email address: romeo@ac.me (Romeo Meštrović)

where f^* is the boundary function of f on \mathbb{T} , i.e.,

$$f^*(e^{i\theta}) = \lim_{r \to 1^-} f(re^{i\theta})$$

is the *radial limit* of *f* which exists for almost every $e^{i\theta}$.

Furthermore, the *Hardy space* H^q ($0 < q \le \infty$) consists of all functions *f*, holomorphic in \mathbb{D} , which satisfy

$$\sup_{0\leq r<1}\int_0^{2\pi} \left|f\left(re^{i\theta}\right)\right|^q \frac{d\theta}{2\pi} < \infty$$

if $0 < q < \infty$, and which are bounded when $q = \infty$:

$$\sup_{z\in\mathbb{D}}|f(z)|<\infty.$$

It is known (see [9] and [14]) that

$$N^r \subset N^p \ (r > p), \quad \bigcup_{q > 0} H^q \subset \cap_{p > 1} N^p, \quad \text{and} \quad \bigcup_{p > 1} N^p \subset N^+ \subset N,$$

where the above containment relations are proper.

In 1977 M. Stoll [16] (with the notation $(\log^+ H)^{\alpha}$ for N^p) proved the following result.

Theorem A (M. Stoll [16, Theorem 4.2]). The space N^p with the topology given by the metric d_p defined by

$$d_{p}(f,g) = \left(\int_{0}^{2\pi} \left(\log(1+|f^{*}(e^{i\theta}) - g^{*}(e^{i\theta})|)\right)^{p} \frac{d\theta}{2\pi}\right)^{1/p}, \quad f,g \in N^{p},$$
(2)

becomes an F-algebra, that is, an F-space (a complete metrizable topological vector space with the invariant metric) in which multiplication is continuous.

Since the function $f \mapsto d_p(f, 0)$ defined for $f \in N^p$ is not a norm, the Privalov space N^p is not a *Banach* algebra.

The function $d_1 = d$ defined on the Smirnov class N^+ by (2) with p = 1 induces the metric topology on N^+ . In 1973 N. Yanagihara [17] showed that under this topology, N^+ is an *F*-space.

The study of the spaces N^p (1 < p < ∞) was continued in 1977 by M. Stoll [16] (with the notation (log⁺ H)^{α} in [16]). Further, the topological and functional properties of these spaces were studied by C. M. Eoff ([2] and [3]), N. Mochizuki [14], Y. Iida and N. Mochizuki [5], Y. Matsugu [6] and in author's works [7]–[13]; typically, the notation varied and Privalov was mentioned in [6], [11], [12] and [13]. In particular, the functional, topological and algebraic properties of the spaces N^p and their Fréchet envelopes were recently investigated in [8], [11] and [13].

It is well known (see, e.g., [1, p. 26]) that every function $f \in N^+$ admits a unique factorization of the form

$$f(z) = B(z)S_{\mu}(z)F(z), \quad z \in \mathbb{D},$$
(3)

where B(z) is the *Blaschke product* with respect to zeros $\{z_n\} \subset \mathbb{D}$ of f (the set $\{z_n\}$ may be finite), S_{μ} is a *singular inner function*, and F is an *outer function* for N^+ , i.e.,

$$B(z) = z^{m} \prod_{n=1}^{\infty} \frac{|z_{n}|}{z_{n}} \frac{z_{n} - z}{1 - \bar{z}_{n} z}, \quad z \in \mathbb{D},$$
(4)

with $\sum_{n=1}^{\infty} (1 - |z_n|) < \infty$, *m* a nonnegative integer,

$$S_{\mu}(z) = \exp\left(-\int_{0}^{2\pi} \frac{e^{it} + z}{e^{it} - z} \, d\mu(t)\right)$$
(5)

with positive singular measure $d\mu$, and

$$F(z) = \lambda \exp\left(\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log\left|f^*(e^{it})\right| \frac{dt}{2\pi}\right),\tag{6}$$

where λ is a complex constant such that $|\lambda| = 1$ and $\log |f^*(e^{it})| \in L^1(\mathbb{T})$.

Recall that a function *I* of the form

$$I(z) = B(z)S_{\mu}(z), \quad z \in \mathbb{D},$$

is called an *inner function*, and *I* is a bounded holomorphic function on \mathbb{D} whose boundary values $I^*(e^{i\theta})$ have modulus 1 for almost every $e^{i\theta} \in \mathbb{T}$.

The *inner-outer factorization theorem* for the classes N^p was given and proved by Privalov [15] as follows.

Theorem B (I. I. Privalov [15, pp. 98-100]; also see C. M. Eoff [3]). A function $f \in N^+$ uniquely factorized by (3) belongs to the class N^p if and only if $\log^+ |F^*(e^{i\theta})| \in L^p(\mathbb{T})$.

In 1999 R. Meštrović and A. V. Subbotin [12] characterized the *topological dual space* of N^p (the set of all linear functionals that are continuous with respect to the metric topology d_p) as follows.

Theorem C (R. Meštrović and A. V. Subbotin [12, Theorem 2]). If Φ is a continuous linear functional on N^p , then there exists a sequence $(b_n)_{n=0}^{\infty}$ of complex numbers with $b_n = O\left(\exp\left(-cn^{1/(p+1)}\right)\right)$ for some c > 0, such that

$$\Phi(f) = \sum_{n=0}^{\infty} a_n b_n,\tag{7}$$

where $f(z) = \sum_{n=0}^{\infty} a_n z^n \in N^p$, with convergence being absolute. Conversely, if $(b_n)_{n=0}^{\infty}$ is a sequence of complex numbers for which

$$b_n = O\left(\exp\left(-cn^{1/(p+1)}\right)\right),\tag{8}$$

then (7) defines a continuous linear functional on N^p .

As every space N^p (1) becomes an*F*-algebra, and in particular, a topological algebra, it can $be of interest to investigate the ideal structure of <math>N^p$. Related problems are closely related to those on Banach algebras. For example, the general theory of Banach algebras gives the following information: every maximal ideal of a function algebra *A* over \mathbb{C} is the kernel of an element of the space *M* of all non-zero homomorphisms of *A* into \mathbb{C} , and conversely. It is also well known (see, e.g., [4]) that in a Banach algebra every nontrivial multiplicative linear functional is continuous and that every maximal ideal is the kernel of a multiplicative linear functional.

In the next section we show that for any fixed $\lambda \in \mathbb{D}$, the point evaluation $\gamma_{\lambda}(f) := f(\lambda)$, $f \in N^p$, is a multiplicative continuous linear functional on the space N^p (Proposition 2.1). Moreover, we prove that the set $\mathcal{M}_{\lambda} = \{f \in N^p : f(\lambda) = 0\}$ is a closed maximal ideal of N^p for every $\lambda \in \mathbb{D}$ (Proposition 2.2). Furthermore, we give a complete characterization of multiplicative linear functionals on the space N^p (Theorem 2.3). In contrast to the Banach algebras we show that there exists a maximal ideal \mathcal{M} of N^p such that $\mathcal{M} \neq \gamma_{\lambda}$ for all $\lambda \in \mathbb{D}$ (Theorem 2.4).

2. Maximal ideals in the algebras N^p (1 < p < ∞)

For an arbitrary point $\lambda \in \mathbb{D}$, the *point evaluation* at λ is the functional γ_{λ} on the space N^{p} defined as

$$\gamma_{\lambda}(f) = f(\lambda), \quad f \in N^{p}.$$
⁽⁹⁾

Proposition 2.1. For each $\lambda \in \mathbb{D}$ the point evaluation γ_{λ} defined by (9) is a continuous multiplicative linear functional on N^{p} .

Proof. Obviously, γ_{λ} is a linear and multiplicative functional on N^p . It remains to show that γ_{λ} is continuous. Notice that the sequence $(b_n)_{n=0}^{\infty}$ with $b_n = \lambda^n$ for all n = 0, 1, 2, ... obviously satisfies the condition (8) from Theorem C. Hence, by Theorem C, the linear functional Φ defined on N^p as

$$\Phi(f) := \sum_{n=0}^{\infty} a_n \lambda^n = f(\lambda) := \gamma_{\lambda}(f), \quad f \in N^p,$$

is continuous on N^p with respect to the metric topogy d_p given by (2). \Box

For $\lambda \in \mathbb{D}$, we define

$$\mathcal{M}_{\lambda} = \{ f \in N^p : f(\lambda) = 0 \}.$$
(10)

Proposition 2.2. The set \mathcal{M}_{λ} defined by (10) is a closed maximal ideal of N^p for all $\lambda \in \mathbb{D}$.

Proof. By Proposition 2.1, γ_{λ} is a continuous linear functional on N^p . From this and the fact that \mathcal{M}_{λ} is the kernel of a continuous linear functional on N^p it follows that \mathcal{M}_{λ} is a closed maximal ideal of N^p . \Box

The following result characterizes multiplicative linear functionals on the space N^p .

Theorem 2.3. Let γ be a nontrivial multiplicative linear functional on N^p . Then there exists $\lambda \in \mathbb{D}$ such that $\gamma(f) = f(\lambda)$ for every $f \in N^p$. Consequently, γ is a continuous map.

Proof. Take $\lambda = \gamma(z)$. Then $\gamma(z - \lambda) = 0$. If we suppose that $\lambda \notin \mathbb{D}$, then $z \mapsto 1/(z - \lambda)$ ($z \in \mathbb{D}$) is a bounded function on the closed unit disk $\overline{\mathbb{D}} : |z| \le 1$, and hence $z \mapsto z - \lambda$ ($z \in \mathbb{D}$) is an invertible element of the algebra N^p . However, for each invertible element $f \in N^p$ we have $1 = \gamma(1) = \gamma(f)\gamma(f^{-1})$, which implies that $\gamma(f) \neq 0$. In particular, it follows that $\gamma(z - \lambda) \neq 0$. This contradiction shows that must be $\lambda \in \mathbb{D}$.

Now consider the set $(z - \lambda)N^p = \{(z - \lambda)f(z) : f \in N^p\}$. If we suppose that $f(\lambda) = 0$ for some $f \in N^p$, then by Theorem B, the function g defined by $g(z) = f(z)/(z - \lambda)$ ($z \in \mathbb{D}$) belongs to the class N^p . Therefore, we have

$$\mathcal{M}_{\lambda} = (z - \lambda)N^{p} \subset \ker\gamma, \tag{11}$$

where ker γ is the kernel of the functional γ . By Proposition 2.2, \mathcal{M}_{λ} is a closed maximal ideal of N^p . Hence, by (11) we conclude that $\mathcal{M}_{\lambda} = \text{ker}\gamma$. Moreover, γ is continuous and $\gamma(f) = f(\lambda)$ for all $f \in N^p$. This completes the proof of the theorem. \Box

In contrast to the Banach algebras in which every maximal ideal is the kernel of a multiplicative linear functional (see e.g., [4]), the following assertion shows that this is not true for the *F*-algebras N^p (1 < p < ∞).

Theorem 2.4. There exists a maximal ideal \mathcal{M} of N^p which is not the kernel of a multiplicative linear functional on N^p .

Proof. Let

$$S_{\mu}(z) = \exp\left(-\int_{0}^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t)\right), \quad z \in \mathbb{D},$$

be a singular inner function. By Theorem B, S_{μ} is not an invertible element of the algebra N^p . Therefore, $1 \notin S_{\mu}N^p := \{S_{\mu}f : f \in N^p\}$, whence it follows that $S_{\mu}N^p$ is a proper ideal of N^p . By Zorn's lemma, there exists a maximal ideal \mathcal{M} which contains the ideal $S_{\mu}N^p$. If we suppose that \mathcal{M} is the kernel of a multiplicative linear functional on N^p , then by Theorem 2.3, $\mathcal{M} = \mathcal{M}_{\lambda}$ for some $\lambda \in \mathbb{D}$. Therefore, $(S_{\mu}f)(\lambda) = 0$ for each $f \in N^p$. The previous equality with f(z) = 1 ($z \in \mathbb{D}$) yields $S_{\mu}(\lambda) = 0$. Hovewer, $S_{\mu}(\lambda) \neq 0$ for each $\lambda \in \mathbb{D}$. This contradiction shows that must be $\mathcal{M} \neq \mathcal{M}_{\lambda}$ for each $\lambda \in \mathbb{D}$. This completes the proof of the theorem. \Box

Corollary 2.5. Does not exist a norm defined on the space N^p which induces the same topolgy on N^p as the metric topology d_p , such that N^p is a Banach algebra with respect to this norm.

Proof. The assertion immediately follows from Theorem 2.4 and the well known fact that in Banach algebras every maximal ideal is the kernel of a multiplicative linear functional (see, e.g., [4]). \Box

R. Meštrović / Filomat 29:1 (2015), 1-5

References

- [1] P. L. Duren, *Theory of H^p spaces*, Academic Press, New York, 1970.
- [2] C. M. Eoff, Fréchet envelopes of certain algebras of analytic functions, Michigan Math. J. 35 (1988) 413–426.
- [3] C. M. Eoff, A representation of N_{α}^+ as a union of weighted Hardy spaces, Complex Var. Theory Appl. 23 (1993) 189–199.
- [4] T. W. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, NJ, 1969.
- [5] Y. Iida and N. Mochizuki, *Isometries of some F-algebras of holomorphic functions*, Arch. Math. (Basel) 71 (1998) 297–300.
 [6] Y. Matsugu, *Invariant subspaces of the Privalov spaces*, Far East J. Math. Sci. 2 (2000) no. 4, 633–643.
- [7] R. Meštrović, Topological and F-algebras of holomorphic functions, Ph.D. Thesis, Faculty of Science, University of Montenegro, Podgorica, 1999.
- [8] R. Meštrović, *F-algebras* M^p (1 < $p < \infty$) of holomorphic functions, The Scientific World Journal (subject area: Mathematical Analysis Vol. 2014, Article ID 901726, 10 pages, 2014.
- [9] R. Meštrović and Ž. Pavićević, Remarks on some classes of holomorphic functions, Math. Montisnigri 6 (1996) 27–37.
- [10] R. Meštrović and Ž. Pavićević, Topologies on some subclasses of the Smirnov class, Acta Sci. Math. (Szeged) 69 (2003) 99-108.
- [11] R. Meštrović and Ž. Pavićević, Weakly dense ideals in Privalov spaces of holomorphic functions, J. Korean Math. Soc. 48 (2011) 397-420.
- [12] R. Meštrović and A. V. Subbotin, Multipliers and linear functionals in Privalov spaces of holomorphic functions on the disk, Dokl. Akad. Nauk 365 (4) (1999) 452-454 (in Russian).
- [13] R. Meštrović and J. Šušić, Interpolation in the spaces N^p (1 \infty), Filomat 27 (2013) 293–301.
- [14] N. Mochizuki, Algebras of holomorphic functions between H^p and N_{*}, Proc. Amer. Math. Soc. 105 (1989) 898–902.
- [15] I. I. Privalov, Boundary properties of analytic functions, Izdat. Moskov. Univ., Moscow, 1941 (in Russian).
- [16] M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math. 35 (1977) 139–158.
- [17] N. Yanagihara, Multipliers and linear functionals for the class N⁺, Trans. Amer. Math. Soc. 180 (1973) 449-461.